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1. INTRODUCTION \
1)

The frequency Fc and quality factor Qc of the Chandler wobble, the
earth's free nutation with & nearly 14 month period, are of considerable
geophysical interest because they provide information about the earth's
elastic and anelastic properties at a frequency well below the seismic band:
Smith and Dahlen (1981) provide a thorough reviewv of the relationships between
Fc, Qc and the earth's physical properties.

Estimates of Fc and Qc are made from observations of polar motion, the
movement of the rotation axis with respect to geographical coordinates. In
this study we use the monthly polar motion series of the International
Latitude Service (ILS) (Yumi and Yokoyama, 1980), for the period January 1900
through December 1978, with supplementary data for the period 1979-1985. The
ILS data form the longest available series that has been reduced in a
homogeneous way, and should provide the most reliable estimates. For the
period 1979-1985, both the Satellite Laser Ranging (SLR) data (BIH annual
reports) and optical astrometry data (International Latitude Observatory of
Mizusawa [ILOM]) are available. We smoothed and then interpolated both SLR
and ILOM series with a cubic spline to obtain pole positions at the same

intervals as the ILS series. The results fromthe combined ILS/SLR and
ILS/ILOM series were essentially identical, and the remainder of this paper.
will refer to the results obtained with the ILS/ILOM series.

We use estimators that were developed by Jeffreys in two papers
appearing in 1940 and 1968. The symbols Fc and Qc denote the true values of
the polar motion parameters, while F and Q indicate estimates. We refer to
the estimator from the 1940 paper by the Roman numeral I, and to estimates
derived from it es F(I), Q(I). Similarly, F(II) and Q(II) refer to the
estimators in Jeffreys 1968 paper. Both I and II were developed from maximum
likelihood arguments, assuming that a Gaussian random process is the cause of
polar motion near the Chandler frequency. While this may not be correct,
Monte Carlo experiments demonstrate that it is probably not a critical
assumption, particularly for estimator II. The Monte Carlo experiments also
permit an evaluation of estimator bias and variance in the presence of noise.
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2, AUTOREGRESSIVE DESCRIPTION OF POLAR MOTION

The discrete polar motion equation (Wilson, 1985) is the foundation for
understanding Jeffreys' maximum likelihood estimators. This equation relates
time samples of pole position, M, to time samples of the excitation axis
position, X. Using the complex pole coordinate description in which the real
part is associated with motion along the Greenwich meridian, and the imaginary
part with motion along 90 degrees east longitude, the equation is

“t = R xt_l/z + S Mt-l 1

vhere

R= _WT
i exp(~iyFcT)

S = exp(iWT)

W= 27 Fe(1+4i/2Qe)

Fc is the Chandler frequency expressed in cycles per year (cpy), and Qc is the
dimensionless quality factor, proportional to the exponential decay time Qc/ir
Fc. T is the time interval between observations, measured in years, and t is
the time index which takes on integer values. An equation similar to (1)
appeared in Jeffreys' 1940 peper, differing only in the value for the constant
R, and the time index of X, the excitation series. The choice of R in (1)
produces X in the same units and coordinate system as M. Equation (1) is a
discrete version of the governing differential equation based on Euler's
rigid body equations, and provides a very good approximation for the case of
the ILS data where T= 1/12 year.

Estimating Fc and Qc requires that we find the central frequency and
width of a spectral peak from a finite length time series, a problem that has
received a great deal of attention in geophysical, time series, and electrical
engineering literature, Although there exist many methods to solve this type
of problem, some are clearly inappropriate. For example, if X is a broad
band process, then polar motion has a continuous rather than discrete
spectrum near the Chandler frequency, and will not be strictly sinusoidal in
time. Thus, fitting sinusoids (harmonic analysis), which is a suitable
method for line spectra, as found in tidal studies, for example, is
inappropriate for the Chandler wobble.

Autoregressive spectral analysis, often called Maximum Entropy Spectral
Analysis (MESA) (Ulrych and Bishop, 1975) seems particularly appropriate
because equation (1) shows that the polar motion time series is an
autoregressive process of order 1 (AR-1) if X is a Gaussian random process and
the data are free of noise. Unfortunately, a noisy polar motion time series is
no longer a simple AR-1 process (Box and Jenkins, 1970), and observed polar
motion contains a drift and annual component which do not conform to the AR-1
model. Following Jeffreys we retain the AR-1 model by removing the drift and
the annual term, and applying a correction for noise. This preserves the
simplicity which permits analytical expressions for both the estimates and




their uncerteinty, lternatively, one could allow the order of the AR
process to increase to accommodate the additional variance introduced by
noise, drift, etc, which is equivalent to 1lengthening the Prediction Error
Filter in the MESA (Vicente and Currie, 1976); or one might introduce a more
complicated Auto Regressive-Moving Average (ARMA) model to include the effects
of noise and drift (Ooe, 1978 and Wilson, 1979).

Assuming the AR-1 model to hold, any linear combination of M is also an
AR-—] process. The simplest linear combination is an average of N adjacent
samples

t+N-1
Z My (2a)

= 1
N k=t

The square root (N) normalization keeps the standard deviation of the noise
in the average equal to that in the original data. Time samples of non
overlapping averages will obey equation (2b), which is similar in form to (1):

M

—-—

Ht = R<X > + SN Me N (2b)

where <> denotes an appropriste average of the excitation over the
interval. Equation (2) is the basis for estimator I.

Another linear combination of M is the Fourier coefficient at the
frequency of +6/7 cpy (=0.8571 cpy) as determined from 2 14 month segment of
the monthly time series. The motivation for using this type of average is that
the Fourier series coefficient is & narrovw-band filtered version of the dats,
and thus will capture the signal of the Chandler wobble, while rejecting most

of the broad band noise. For the ¢th segment this coefficient is

144+13
Ay = 1 2 M, exp(-2/rit/14) (3a)
N t=14¢
vhere the square root normalization again provides the same standard error in
A as in the original data., The sequence of these Fourier coefficients

determined from adjacent non-overlapping 14 month segments obeys an equation
similar to (2), end adjacent coefficients in segments , -1 are related by

Ae =R <X> + SZA /-1 (3b)
wvhich is of the same form as (2) or (1), except that now <X> is an appropriate

average of the 6/7 cpy Fourier series coefficients of the excitation function.
Equation (3) forms the basis for estimator IIL.




3. MAXIMUM LIKELIHOOD ESTIMATES

The annuasl motion and the slow drift must be removed because they do not
conform to the AR-1 model. We use Jeffreys' (1968) procedure to remove the
drift: the dats are divided into subsets containing seven years of data, which
is exactly 7 annual periods and close to 6 Chandler periods;i;the mean value
over each 7 year period is computed; a cubic spline interpolater is applied
to each component of the 7 year means to obtain monthly values of the drift;
finally, the interpolated drift series is subtracted from the original data.
Figure 1 shows the drift computed in this way. After subtracting the drift,
the annual component is determined by finding the best least squares fit
sinusoid at a frequency of 1 cpy. In units of willi arc seconds (mas) the
annual term is

(-45.4 cos(+4) = B4.2 sin(+) ) + i(72.5 cos(+) = 31.7 sin(+) )
or in terms of prograde and retrograde components
(~38.6 + i78.3)exp(i+) + (-6.8 -i5.9)exp(i-)

The arguments of the trigonometric functions are radiasns after sfter January
1, with the symbols (+) or (-) indicating the sign of the argument. After
subtracting the drift and annual terms, the remaining series, shown in Figure
2, is assumed to be the Chandler vwobble arising from a Gaussian random
excitation, with added noise which is independent from month to month.

In the maximum likelihood method (MLM), it is assumed that <X> forms a
sequence of zero-mean Gaussian random numbers with independent real and
imaginary parts. This is reasonable because even if individual values of X
are not Gaussian, the averages, <X>, will tend to be by the Central Limit
Theorem, Furthermore, independence among the sequence of non-overlapping
averages should improve with increasing N, even if adjacent values of X are
not independent. The MLM estimates correspond to those values of F and Q
which minimize the variance of the series <X> determined from the data using
equations (2) or (3), because least squares and maximum likelihood are
equivalent for Gaussian random variables. Since the structure of equations
(2) and (3) is identical, we present the explicit expressions using M to
refer either to the simple average in (2) or to the Fourier coefficients in
(3).

The estimates depend on the date through the variance U, and the
covariances V and W.

P
U= Z[M)% - 2ps? (4)
t=1
P
V4N = T M, "‘c-1 (5)
t=2

The number of independent values of M is denoted by p, and U has been
corrected by subtracting the contribution of the noise, which has standard
deviation s in each component of the complex datum. No noise correction is



applied to Vor W, because they incorporate products from non-overlapping
intervals with presumably uncorrelated errors. Following Jeffreys, we define

a = VU b = W/U
and the MLM estimates are
F = 1/(27TN) Tan"l(b/a) 1/Q = 1n(a? + b2)/(-27FTIN) (6)

For &stimator II, (equation 3), F is the correction to the trial frequency of
6/7 cpy. Standard errors for a and b are given by

5,2 = 5,2 = (1~ a2- b2)/2p ™

a
and may be used to calculate the corresponding errors of the estimates. Be-
cause 1/Q tends to be normally distributed, standard errors are first
calculated in terms of 1/Q, and then the corresponding limits for Qc are
determined from their reciprocals.

Table 1 shows estimates and standard errors obtained with estimator II,
and estimator I with N=1,2,3, F(I), F(II), and associated standard errors are
practically independent of the value assumed for s, but Q(I) and Q(II) depend
strongly on s. The best modern optical determinations have standard error s
of about 10 mas. For the ILS data,Jeffreys (1968) estimated s to be near 30
“mas while Wilson (1979) found s to be sbout 2B mas. Estimates of Qc are shown
for s = 10 and 30 mas. Table 1 shows that estimates obtasined by methods I end
IT are generally inconsistent in that their confidence intervals do not over-
lap in most cases. Thus, one or both of the estimators must be at fault, and
we turn to Monte Carlo experiments in the next section to discover the source
of the inconsistency.

Table 1 - Polar Motion Parameter Estimates
From the ILS/ILOM Series 1900-1985

Method F Q(s=10mas) Q(s=30 0 mas)
and N (cpy)

I-1 0.8178 +/- .0116 . 10 (8,13) 57 (37,114)
I-2 0.8263 +/- .0067 15 (12,21) 35 (25,57)
I-3 0.8322 +/- .0106 18 (14,25) 26 (25,57)

II-14 0.8436 +/- .0022 123 (70,471) 134 (75,592)




4. MONTE CARLO EVALUATION OF ESTIMATORS

Estimates obtained by methods I and II are complicated functions of the
data, and involve only approximate corrections for the effects of noise.
Thus it is not easy to analytically predict their performance, as measured by
bias and variance, especially in the presence of noise. For this task, we
turn to Monte Carlo studies using simulated polar motion data created with a
random number generator. With simulated data, the true polar motion
parageters are known exactly, and we may compare the estimates from I and II
with the known values. The Monte Carlo experiments can also test the
performance of the estimators when the data deviate from the AR-1 model.

The simulated polar motion data vere generated from Gaussian, zeroc mean,
random numbers at 1 month intervals, The standard deviation of the
excitation was chosen to be 15 mas in each component of X, based upon
estimates of the excitation pover spectrum near the Chandler frequency by
Wilson and Haubrich (1976). The monthly values of X were used to generate the
simulated polsr motion series using equation (1), with an initial pole
position amplitude that was a uniformly distributed random number between 50
and 150 mas. Fc in equation (1) was fixed at 0.843 cpy, and Qc was set at 50,
100, or 200. The Gaussian noise added to the simulated polar motion series
was given standard deviations varying between O and 40 mas in each coordinate.

The Monte Carlo Experiments were performed on ensembles of 50 independent
series of 1032 points, corresponding to 86 years of monthly data. The 50
estimates of Qc and Fc were used to determine estimator bias and standard
deviation., The average predicted standard deviations from equation (7) were
also computed., The most significant finding from these experiments was that
Method II was far superior to I regardless of the noise level and the value of
Qc. For example, standard deviations of F(II) vere an order of magnitude or
more smaller than those for F(I). For non-zero noise levels, Q(I) vas very
biased, yielding values that were an order of magnitude too small. This is
consistent with the very low values for Q(I) shown in Table I. Q(II) was also
biased by noise, as described below.

Additional Monte Carlo experiments were conducted in which X consisted of
82 wvhite noise series which had been integrated once or tvice in time. This
represents a departure from the AR-1 model, in that adjacent values of X are
no longer independent, The performance of estimator II was found to be
unchanged, and thus we conclude that the assumption that monthly values of X
are Gaussian and independent is not critical.

While F(II) is unbiased by noise, Q(II) becomes biased as the noise level
increases, as shown in figure 3, The bias is approximately independent of the
value of Qc. On the basis of this figure, we propose a correction for the
estimate in Table I by the factor 1.33, and a corresponding increase in the
upper limit on the confidence interval for Qc. To be conservative, we retain
the original lower confidence limit on Qc. The Monte Carlo experiments also
show that when s=30 mas, equation (7) predicts standard errors for F(II) and
Q(II) which agree reasonably well with the observed standard deviations in
the Monte Carlo experiments,




5. DISCUSSION AND CONCLUSIONS

Table 2 summarizes the estimates obtained in this study by method I1I,
including the adjustment for the bias in Q as discussed above. Table 2 also
summarizes a8 number of other published estimates.

Estimates obtained by method I are quite similar to those reported by
Jeffreys (1940), and in both cases are inconsistent with méthod II results.
This*inconsistency is attributable to the poor performance of method I,
demonstrated by the Monte Csrlo experiments. The superior performance of
method II is due to the fact that the Fourier coefficients derived from 14
month segments of the data at 6/7 cpy have vastly better signal to noise
levels than an individual datum. The Fourier coefficient is effectively sa
narrow-band filtered version of the data which preserves that portion of the
data with the best signal to noise level. Method II results obtained in this
study are consistent with Jeffreys (1968) results and with other recent
estimates.

Method II is probably suitable for more general spectral analysis.
problems in which the frequency and width of an isolated peak are to be
estimated in the presence of noise. Method II constitutes a compromise between
traditional Fourier analysis and sutoregressive spectral methods, using the
Fourier series as a narrow band filter to first reject the noise and then
autoregressive analysis as a sensitive high resolution estimator of the
central frequency and spectral line width.

Tadble 2

Polar Motion Parameter Estimates
Source Method F Q
Jeffreys (1940) I 0.8177 +/-.0127 46 (37,60)
Jeffreys (1968) II 0.8432 +/-.0043 61 (37,193)
Ooe (1978) ARMA 0.8400 +/-.0039 96 (50,300)
Wilson&Vicente (1981) ARMA ~ 0.8430 +/-.0070 175 (48,1000)
This study 1I 0.8435 +/-.0022 179 (75,789)

(bias corrected)
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FIGURE CAPTIONS

Figure 1: The drift removed from the ILS/ILOM series as determined from means
over 7 year intervals and cubic spline interpolated to monthly values.

Figure 2: The ILS/ILOM series after removal of drift and annual
components.

Figure 3: The ratio of estimated Q by method II to the true value as a
funcgion of noise level. Each symbol represents the result of an experiment
in vhich an ensemble of 50 simulated polar motion series were used to obtain
average values of 1/Q(II), as described in the text.
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